\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Fouriertransformatie

Ik weet niet echt of dit de goede categorie is, maar het gaat oa over cos(x) en sin(x) integreren dus dan maar hier, :)

Ik moet een fouriertransformatie toepassen op de functie:

f(x) = 1-x voor |x|$<$1
= 0 voor |x|$\geq$1

Deze functie is niet even of oneven dus gewoon de complete transformatie. Ik kom hierbij op:

-2i/$\lambda$ · cos($\lambda$) + 2/$\lambda$ · sin($\lambda$) + 2i/$\lambda$2 · sin($\lambda$)

Voor $\lambda \ne $0. Voor $\lambda$=0 is het 2.

Dit antwoord klopt tot dusver. Nu wordt mij gevraagd wat:

$\infty$0$\int{}$sin(t)/tdt

is. Dit lijkt zeer sterk op term twee van de zojuist getransformeerde. Mijn strategie is dus om de Fouriergetransformeerde terug te transformeren wat dna dus weer gelijk aan f(x)=1-x moet zijn. Termsgewijs terugtransformeren mag, en term 2 hoeft niet teruggetransformeerd te worden want die wordt juist gevraagd. Dit klopt toch tot dusver? Helaas loop ik al vast bij term 1 ... Ik dacht namelijk dat term 1 een even functie was en dus als terugtransformatie dit zou zijn:

(1/$\pi$)10$\int{}$-2i/$\lambda$ · cos($\lambda$) · cos($\lambda$x) d$\lambda$

Ik heb geen idee hoe ik dit moet oplossen. Wellicht term 2 en 3 van deze integraal samenvoegen en dan partieel integreren. Maar hoe?

Ik hoop dat jullie me volgen en kunnen helpen!

Robert
Student universiteit - woensdag 10 januari 2007

Antwoord

Je weet wat je krijgt als je gaat terugtransformeren: de functie waar je mee begonnen bent. Schrijf de inversie-formule op en vul eens x=0 in.

kphart
zondag 14 januari 2007

©2001-2024 WisFaq