Geen buigpunt
hall,
Weten jullie hoe ik deze opgave moet aanpakken?
fp:x$\to$ -2x+ln(ex-p) en (p$>$0). Kp is de grafiek van fp.
Toon aan dat Kp voor geen enkele p een buigpunt heeft.
Nu is mijn idee dat de tweede afgeleide dus geen nulpunten mag hebben, echter lukt het mij niet de tweede afgeleide te vinden.
Kuzz Katie
Katie
Leerling bovenbouw havo-vwo - maandag 12 april 2004
Antwoord
Dag Katie,
Dat idee is correct. Voor de eerste afgeleide gebruiken je de kettingregel: D(ln(f))=D(f) · 1/f
Dus D(fp)= -2 + ex/(ex-p)
Dit moet je nog eens afleiden, dus die eerste term zal wegvallen, voor de tweede term gebruik je de regel voor het afleiden van een quotiënt:
D2(fp)=((ex-p)ex-exex)/(ex-p)2 = -pex/(ex-p)2
En wanneer wordt dit nul? Juist als de teller nul is, dus p=0 (mag niet) of ex=0 (ook nooit dus)
Groeten, Christophe.
Christophe
maandag 12 april 2004
©2001-2024 WisFaq
|