Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Muntstuk

Piet gooit met 6 muntstukken.
  1. wat is de kans dat je 5x kop gooit?
  2. wat is de kans dat je 3x munt gooit?
  3. wat is de kans dat je minder dan 3x kop gooit.

    Vanas
    Cursist vavo - woensdag 12 april 2023

Antwoord

In het geval van $n$ waarnemingen, alle onafhankelijk, elk resulterend in succes of mislukking, en elk met eenzelfde kans $p$ op succes, spreekt men van een binomiale kansverdeling.

Op 3. Binomiale verdeling kan je er meer over vinden.

In dit geval gaat het om:

$X$~aantal munt of aantal kop
$p=$1/2
$n=6$

1.
$
\begin{array}{l}
P(X = 5) = \left( {\begin{array}{*{20}c}
6 \\
5 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^5 \cdot \left( {\frac{1}{2}} \right) \\
of\,\,ook \\
P(X = 5) = \left( {\begin{array}{*{20}c}
6 \\
5 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^6 \\
\end{array}
$

2.
$
P(X = 3) = \left( {\begin{array}{*{20}c}
6 \\
3 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^6
$

3.
$
\begin{array}{l}
P(X < 3) = P(X = 0) + P(X = 1) + P(x = 2) \\
P(X < 3) = \left( {\frac{1}{2}} \right)^6 + \left( {\begin{array}{*{20}c}
6 \\
1 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^6 + \left( {\begin{array}{*{20}c}
6 \\
2 \\
\end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^6 \\
\end{array}
$

Lukt dat zo ?

WvR
woensdag 12 april 2023

©2001-2024 WisFaq