Algebra Analyse Bewijzen De grafische rekenmachine Discrete wiskunde Fundamenten Meetkunde Oppervlakte en inhoud Rekenen Schoolwiskunde Statistiek en kansrekenen Telproblemen Toegepaste wiskunde Van alles en nog wat
|
\require{AMSmath}
Re: Re: Re: Re: Gedeelte van examenvraag mbo 78-79 (2)
Is goed uiteindelijk dus (21/2,5,3)+m (2,2,1). Het model geeft (-31/2,-1,0)+m(2,2,1) met de toevoeging bijvoorbeeld...
mboudd
Leerling mbo - zaterdag 11 april 2020
Antwoord
$ \begin{array}{l} P(\lambda + \mu ,2\lambda ,3 + \mu ) \\ A(1,0,1) \\ B(0,2, - 1) \\ d(A,P) = d(B,P) \\ d(A,P) = \sqrt {\left( {\lambda + \mu - 1} \right)^2 + \left( {2\lambda } \right)^2 + \left( {3 + \mu - 1} \right)^2 } \\ d(A,P) = \sqrt {5\lambda ^2 + 2\lambda \mu - 2\lambda + 2\mu ^2 + 2\mu + 5} \\ d(B,P) = \sqrt {\left( {\lambda + \mu } \right)^2 + \left( {2\lambda - 2} \right)^2 + \left( {3 + \mu + 1} \right)^2 } \\ d(B,P) = \sqrt {5\lambda ^2 + 2\lambda \mu - 8\lambda + 2\mu ^2 + 8\mu + 20} \\ \sqrt {5\lambda ^2 + 2\lambda \mu - 2\lambda + 2\mu ^2 + 2\mu + 5} = \sqrt {5\lambda ^2 + 2\lambda \mu - 8\lambda + 2\mu ^2 + 8\mu + 20} \\ 5\lambda ^2 + 2\lambda \mu - 2\lambda + 2\mu ^2 + 2\mu + 5 = 5\lambda ^2 + 2\lambda \mu - 8\lambda + 2\mu ^2 + 8\mu + 20 \\ - 2\lambda + 2\mu + 5 = - 8\lambda + 8\mu + 20 \\ 6\lambda = 6\mu + 15 \\ \lambda = \mu + 2\frac{1}{2} \\ l:\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 3 \\ \end{array}} \right) + \left( {\mu + 2\frac{1}{2}} \right)\left( {\begin{array}{*{20}c} 1 \\ 2 \\ 0 \\ \end{array}} \right) + \mu \left( {\begin{array}{*{20}c} 1 \\ 0 \\ 1 \\ \end{array}} \right) \\ l:\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 3 \\ \end{array}} \right) + 2\frac{1}{2}\left( {\begin{array}{*{20}c} 1 \\ 2 \\ 0 \\ \end{array}} \right) + \mu \left( {\begin{array}{*{20}c} 1 \\ 2 \\ 0 \\ \end{array}} \right) + \mu \left( {\begin{array}{*{20}c} 1 \\ 0 \\ 1 \\ \end{array}} \right) \\ l:\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 3 \\ \end{array}} \right) + \left( {\begin{array}{*{20}c} {2\frac{1}{2}} \\ 5 \\ 0 \\ \end{array}} \right) + \mu \left( {\begin{array}{*{20}c} 2 \\ 2 \\ 1 \\ \end{array}} \right) \\ l:\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} {2\frac{1}{2}} \\ 5 \\ 3 \\ \end{array}} \right) + \mu \left( {\begin{array}{*{20}c} 2 \\ 2 \\ 1 \\ \end{array}} \right) \\ \end{array} $
Kijk 's aan...
Of op de andere manier:
$ \begin{array}{l} AB:\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} 1 \\ 0 \\ 1 \\ \end{array}} \right) - \left( {\begin{array}{*{20}c} 0 \\ 2 \\ { - 1} \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} 1 \\ { - 2} \\ 2 \\ \end{array}} \right) \\ \alpha :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} {\frac{1}{2}} \\ 1 \\ 0 \\ \end{array}} \right) + \rho \left( {\begin{array}{*{20}c} 2 \\ 1 \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} 2 \\ 0 \\ { - 1} \\ \end{array}} \right) \\ \beta :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} 0 \\ 0 \\ 3 \\ \end{array}} \right) + \lambda \left( {\begin{array}{*{20}c} 1 \\ 2 \\ 0 \\ \end{array}} \right) + \mu \left( {\begin{array}{*{20}c} 1 \\ 0 \\ 1 \\ \end{array}} \right) \\ \left\{ \begin{array}{l} \frac{1}{2} + 2\rho + 2\tau = \lambda + \mu \\ 1 + \rho = 2\lambda \\ - \tau = 3 + \mu \\ \end{array} \right. \\ \left\{ \begin{array}{l} 1 + 4\rho + 4\tau = 2\lambda + 2\mu \\ 1 + \rho = 2\lambda \\ - 2\tau = 6 + 2\mu \\ \end{array} \right. \\ (1) - (3) \\ 1 + 4\rho + 6\tau = 2\lambda - 6 \\ 7 + 4\rho + 6\tau = 2\lambda \\ (2) \\ 1 + \rho = 7 + 4\rho + 6\tau \\ - 3\rho = 6 + 6\tau \\ \rho = - \frac{{6 + 6\tau }}{3} = - 2 - 2\tau \\ \alpha :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} {\frac{1}{2}} \\ 1 \\ 0 \\ \end{array}} \right) + \left( { - 2 - 2\tau } \right)\left( {\begin{array}{*{20}c} 2 \\ 1 \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} 2 \\ 0 \\ { - 1} \\ \end{array}} \right) \\ \alpha :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} {\frac{1}{2}} \\ 1 \\ 0 \\ \end{array}} \right) + - 2\left( {\begin{array}{*{20}c} 2 \\ 1 \\ 0 \\ \end{array}} \right) - 2\tau \left( {\begin{array}{*{20}c} 2 \\ 1 \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} 2 \\ 0 \\ { - 1} \\ \end{array}} \right) \\ \alpha :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} { - 3\frac{1}{2}} \\ { - 1} \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} { - 4} \\ { - 2} \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} 2 \\ 0 \\ { - 1} \\ \end{array}} \right) \\ \alpha :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} { - 3\frac{1}{2}} \\ { - 1} \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} { - 2} \\ { - 2} \\ { - 1} \\ \end{array}} \right) \\ \alpha :\left( {\begin{array}{*{20}c} x \\ y \\ z \\ \end{array}} \right) = \left( {\begin{array}{*{20}c} { - 3\frac{1}{2}} \\ { - 1} \\ 0 \\ \end{array}} \right) + \tau \left( {\begin{array}{*{20}c} 2 \\ 2 \\ 1 \\ \end{array}} \right) \\ \end{array} $
't Is hard werken. Hopelijk helpt het...
WvR
zaterdag 11 april 2020
©2001-2024 WisFaq
|
|