\require{AMSmath} Dit is een reactie op vraag 87338 Re: Binonium van Newton Dat is het helemaal :) Ronald Leerling bovenbouw havo-vwo - donderdag 27 december 2018 Antwoord Ok... daar komt ie... $ \begin{array}{l} \sum\limits_{k = 0}^{10} {\left( {\begin{array}{*{20}c} {10} \\ k \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} } = \\ \left( {\begin{array}{*{20}c} {10} \\ 0 \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} + \left( {\begin{array}{*{20}c} {10} \\ 1 \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} + ... + \left( {\begin{array}{*{20}c} {10} \\ {10} \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} \\ \left( {\frac{1}{2}} \right)^{10} \cdot \left( {\left( {\begin{array}{*{20}c} {10} \\ 0 \\ \end{array}} \right) + \left( {\begin{array}{*{20}c} {10} \\ 1 \\ \end{array}} \right) + ... + \left( {\begin{array}{*{20}c} {10} \\ {10} \\ \end{array}} \right)} \right) \\ \left( {\frac{1}{2}} \right)^{10} \cdot 2^{10} = 1 \\ \end{array} $ Dat was niet echt een verrassing of toch? WvR donderdag 27 december 2018 Re: Re: Binonium van Newton ©2001-2024 WisFaq
\require{AMSmath}
Dat is het helemaal :) Ronald Leerling bovenbouw havo-vwo - donderdag 27 december 2018
Ronald Leerling bovenbouw havo-vwo - donderdag 27 december 2018
Ok... daar komt ie... $ \begin{array}{l} \sum\limits_{k = 0}^{10} {\left( {\begin{array}{*{20}c} {10} \\ k \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} } = \\ \left( {\begin{array}{*{20}c} {10} \\ 0 \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} + \left( {\begin{array}{*{20}c} {10} \\ 1 \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} + ... + \left( {\begin{array}{*{20}c} {10} \\ {10} \\ \end{array}} \right) \cdot \left( {\frac{1}{2}} \right)^{10} \\ \left( {\frac{1}{2}} \right)^{10} \cdot \left( {\left( {\begin{array}{*{20}c} {10} \\ 0 \\ \end{array}} \right) + \left( {\begin{array}{*{20}c} {10} \\ 1 \\ \end{array}} \right) + ... + \left( {\begin{array}{*{20}c} {10} \\ {10} \\ \end{array}} \right)} \right) \\ \left( {\frac{1}{2}} \right)^{10} \cdot 2^{10} = 1 \\ \end{array} $ Dat was niet echt een verrassing of toch? WvR donderdag 27 december 2018
WvR donderdag 27 december 2018
©2001-2024 WisFaq