Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Normale verdeling

Beste,
Gegeven : x , y en z zijn normaal verdeeld met :
x (1;4) y (2;2) z (3;3)

Bepaal b zodat P (|X-Y+Z-1|$>$b )= 0,66

Ik ben als volgt te werk gegaan :
Eerst de absolute waarde uit gewerkt door :
P (X-Y+Z-1$>$b )+ P (-X+Y-Z+1$>$b ) = 0,66

dan X - Y = T met T (-1;4,47) en -x + y = R ( 1;4,47)
Ik heb dit analoog met Z gedaan en proberen b te bepalen maar mijn antwoord is fout.
Het moet 3,369 zijn.
Kan iemand me helpen?

Groeten

Jaris

jaris
3de graad ASO - maandag 29 mei 2017

Antwoord

Hallo Jaris,

Laat U = X - Y + Z. Heb je dan gevonden dat U ($2$;$\sqrt{29}$)?

Groet,

FvL
maandag 29 mei 2017

 Re: Normale verdeling 

©2001-2024 WisFaq