Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Substitutie in differentiaalvergelijking

Hallo,
Moet voor een wiskundesom (wel natuurkundige eenheden gebruikt) een formule substitueren in een andere formule.
Dit is de vraag: leid af dat

$B= \frac{1}{2} m \omega^2A^2$

door de formule

$u(t)= A\cos(\omega t+\varphi)$

te substitueren in de vergelijking

$\frac{1}{2}mv^2 + \frac{1}{2}cu^2= B$

Gebruik daarbij dat $v(t)= u'(t) = du/dt = -A\omega \sin(\omega t+\varphi)$
hierbij geldt dat $\omega^2= c/m$.

Als er iemand is die me hier een handje mee kan helpen, heel graag.
Mvg

max
Leerling bovenbouw havo-vwo - maandag 9 mei 2016

Antwoord

Beste Max,

Dit is een kwestie van alles netjes in te vullen:
$$\frac{1}{2}mv^2 + \frac{1}{2}c u^2= B$$wordt door $u$ en $v$ te vervangen door de gegeven formules:
$$\frac{1}{2}m\left( -A\omega \sin(\omega t+\varphi) \right)^2 + \frac{1}{2}c \left( A\cos(\omega t+\varphi) \right)^2= B$$Werk de kwadraten uit:
$$\frac{1}{2}m A^2 \omega^2 \sin^2(\omega t+\varphi)
+ \frac{1}{2}c A^2\cos^2(\omega t+\varphi) = B$$Gebruik nu dat $\omega^2 = c/m$ waaruit je kan halen dat $c = m\omega^2$:
$$\frac{1}{2}m A^2 \omega^2 \sin^2(\omega t+\varphi)
+ \frac{1}{2}m\omega^2 A^2\cos^2(\omega t+\varphi) = B$$Nu kan je $\frac{1}{2}m A^2 \omega^2$ buiten haakjes brengen en de grondformule van de goniometrie gebruiken. Kan je zo verder?

mvg,
Tom

td
dinsdag 10 mei 2016

 Re: Substitutie in differentiaalvergelijking 

©2001-2024 WisFaq