Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 76861 

Re: Partieelbreuk

Bedankt voor het snelle antwoord!
Bij het splitsen van de breuk zit ik met volgend probleem: A/s^2 + B/(s-1) + c/(s+1). Ik kan me herinneren dat we soms in de teller de afgeleide van de opgegeven teller zetten. Moet ik dan 2sB schrijven als teller bij de tweede breuk? Of ben ik helemaal verkeerd?

Groeten

Elke
3de graad ASO - maandag 16 november 2015

Antwoord

Zoiets moet het zijn!

$
\eqalign{
& \frac{{s^3 + s^2 + 1}}
{{s^2 (s - 1)(s + 1)}} = \frac{A}
{{s^2 }} + \frac{B}
{{s - 1}} + \frac{C}
{{s + 1}} \cr
& geeft: \cr
& \frac{{A \cdot (s - 1)(s + 1)}}
{{s^2 (s - 1)(s + 1)}} + \frac{{B \cdot s^2 (s + 1)}}
{{s^2 (s - 1)(s + 1)}} + \frac{{C \cdot s^2 (s - 1)}}
{{s^2 (s - 1)(s + 1)}} = \cr
& \frac{{A \cdot (s - 1)(s + 1) + B \cdot s^2 (s + 1) + C \cdot s^2 (s - 1)}}
{{s^2 (s - 1)(s + 1)}} = \cr
& Enz... \cr}
$

...en dan verder uitwerken...?

WvR
maandag 16 november 2015

©2001-2024 WisFaq