Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 75981 

Re: Re: Wiskunde Olympiade opgave 1994-A3

Oké erg bedankt, dit is mijn laatste vraag.
Weet u misschien waar er een uitwerking van deze opgave te vinden is? Ik loop namelijk op een bepaald punt vast.

groetjes,

oscar

Oscar
Leerling bovenbouw havo-vwo - zaterdag 4 juli 2015

Antwoord

Hallo Oscar,

Ik weet niet waar je een uitwerking kunt vinden. Je kunt natuurlijk wel altijd bij ons hulp vragen.
Ik weet niet waar je vastloopt. Heb je dit al geprobeerd (zie onderstaande figuur):

q75982img1.gif

Je weet al dat DE en PQ elkaar loodrecht snijden. Dat betekent dat de driehoeken DRP en DAE gelijkvormig zijn, zie linker figuur. In driehoek DAE ken je alle zijden (Pythagoras), dus in driehoek DRP zijn ook alle zijden te berekenen.

In de rechter figuur zijn nog eens drie gelijkvormige driehoeken aangegeven, waaronder DRP waarvan je alle zijden kent. Van al deze driehoeken zijn dus alle zijden te berekenen.

Hiermee zou met een beetje puzzelen (optellen en aftrekken) de lengte van PQ te berekenen moeten zijn. Lukt dit nu?

PS: Na een tip zie ik dat je PQ sneller kunt berekenen, zie onderstaande figuur:

q75982img2.gif

De grijze en gestreepte driehoeken zijn congruent (HZH). Dan geldt dus: PQ=ED. Met Pythagoras had je ED al berekend, denk ik.

GHvD
zaterdag 4 juli 2015

 Re: Re: Re: Wiskunde Olympiade opgave 1994-A3 

©2001-2024 WisFaq