Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 74504 

Re: Oppervlakte van gebieden

Nee dat was geen antwoord op mijn vraag. Om een gebied te berekenen op de TI moet je, zo ver ik weet eerst het gebied onder de bovenste functie berekenen en vervolgens daar het stukje onder de onderste functie tot x van aftrekken.

Mijn vraag: kan dat niet in een keer op de rekenmachine. Gezien je antwoord zal dat wel niet. Als dat wel mogelijk is verneem ik het graag.

edward
Leerling bovenbouw havo-vwo - donderdag 11 december 2014

Antwoord

Nee, dat gaat inderdaad niet zomaar. Je moet de integraal van de 'bovenste functie' min de 'onderste functie' nemen. Zie de link hieronder. Maar in het interval $[-\frac{1}{2}\pi,\pi]$ draait 'boven' en 'onder' steeds om, dus dat is lastig. Maar waarom moeilijk doen? De oppervlakten van de 4 gebieden zijn apart met je GR vrij eenvoudig te bepalen.

$
\eqalign{\int\limits_{ - \frac{1}
{2}\pi }^{0{,}25268...} {\cos (x) - 2\sin (2x)} \,dx \approx 3{,}125}
$

geeft:



De rest gaat precies zo, maar dan anders...:-)

WvR
donderdag 11 december 2014

©2001-2024 WisFaq