Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 73731 

Re: Taartjes kiezen

Dus 9!/(9!-1!).1! x 8!/(8!-1!).1! x 7!/(7!-2!).2!

klopt dit?

jessy
Ouder - vrijdag 22 augustus 2014

Antwoord

Als je dit bedoelt:

$
\left( {\begin{array}{*{20}c}
9 \\
1 \\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
8 \\
1 \\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
7 \\
2 \\
\end{array}} \right) = 1512
$

...en dat is (ook) goed. Maar dat zei ik toch al?

Wat jij schrijft klopt niet!

$
\left( {\begin{array}{*{20}c}
9 \\
1 \\
\end{array}} \right) = \frac{{9!}}{{(9 - 1)! \cdot 1!}}
$

Je faculteiten staan op de verkeerde plaats.

noot
Die $
\left( {\begin{array}{*{20}c}
9 \\
1 \\
\end{array}} \right)
$ reken je niet (zo) uit, want 1 ding kiezen uit 9 dingen kan (natuurlijk) op 9 manieren!

WvR
vrijdag 22 augustus 2014

©2001-2024 WisFaq