Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Een tentamen van 40 vragen

Help! ik heb binnenkort een herkansing voor mijn wiskunde tentamen en ben de oefentoets aan het maken maar ik kom niet uit de volgende opgave:

Stel nu dat een tentamen bestaat uit 40 multiple choice vragen, waarbij er per vraag uit 5 antwoorden kan worden gekozen (A/B/C/D/E).

Van die 50 studenten hebben zich 6 studenten in het geheel niet voorbereid en deze 6 studenten vullen de 40 vragen volkomen op de gok in.

Als X de kansvariabele voorstelt van het aantal goed beantwoorde vragen door zo’n 'gokstudent', bereken dan:
  1. Op hoeveel verschillende manieren een gokstudent het tentamen kan invullen.
  2. De kans dat hij of zij precies 10 vragen goed beantwoordt, dus P(X=10).
  3. De kans dat hoogstens 2 gokstudenten precies 10 vragen goed hebben.
Mijn uitwerkingen:
  1. 40 vragen met alle 5 mogelijkheden, dus een machtsboom, 540 = 9·1027 mogelijkheden.
  2. P(x=10)=?
  3. P(2 keer x=10)=?

Thomas
Student hbo - donderdag 3 juli 2014

Antwoord

Hallo Thomas,

Je antwoord op vraag a is juist.

b.
X is binomiaal verdeeld, met n=40 en p=1/5. Bereken dan de kans P(x=10):

c.
Als het goed is, heb je berekend: P(precies 10 antwoorden goed)=0,1075. Dit gebruiken we bij vraag c:

Het aantal gokstudenten dat precies 10 antwoorden goed heeft, is ook weer binomiaal verdeeld, met n=6 en p=0,1075. Bereken hiermee de kans P(x$\le$2):

Lukt het hiermee?

GHvD
donderdag 3 juli 2014

 Re: Een tentamen van 40 vragen  

©2001-2024 WisFaq