De integraal van -1 to 1 van de functie 1/x is gelijk aan + oneindig. Als je opsplitst van -1 tot b en van b tot 1 en als je dan met limiet van b nadert naar 0 werkt, maar de stukjes oppervlaktes onder en boven de x-as heffen elkaar toch gewoon op, dus is de uitkomst 0?
OPA
3de graad ASO - dinsdag 17 september 2013
Antwoord
Hallo Opa.
Ik denk dat je het volgende bedoelt: $ \mathop {\lim }\limits_{b \to 0} \int\limits_{ - 1}^b {\frac{1}{x}} + \int\limits_b^1 {\frac{1}{x}} = 0 $
Dit is oplosbaar omdat de integraal bestaat. je kunt b zo klein kiezen als je wil bijvoorbeeld 0.00001 Echter zodra b=0 gaat het verhaaltje niet op. Want dan ga je echt rekenen met oneindig en dat mag niet zomaar.