Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 70334 

Re: Homomorfismen

Dat eerste is ook niet zo, dat geldt alleen voor n is even, dat was ik vergeten er bij te zetten.
N' is een normaaldeler van G'. Er is heel wat weggevallen zie ik er moest staan: isomorfisme G/N-G'/N'.

Roos
Student universiteit - woensdag 22 mei 2013

Antwoord

En ik neem dan maar aan dat $N=f^{-1}[N']$. In dat geval hebben we een surjectief homomorfisme $G\to G'\to G'/N'$ met kern gelijk aan $N$. Dan kun je inderdaad de (eerste) isomorfiestelling toepassen.

kphart
vrijdag 24 mei 2013

©2001-2024 WisFaq