Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 70192 

Re: Re: Re: Goniometrische functies

Euhn ja,
Teller en noemer maal 2 doen, en dan 2.cosß.sinß Vervangen door sin2ß
En dan miss kruisproduct...?

Nicola
3de graad ASO - maandag 29 april 2013

Antwoord

Je moet niet moeilijker doen dan nodig...

$
\begin{array}{l}
\tan \beta + \cot \beta = \\
\Large\frac{{\sin \beta }}{{\cos \beta }} + \frac{{\cos \beta }}{{\sin \beta }} = \\
\frac{{\sin \beta \cdot \sin \beta }}{{\cos \beta \cdot \sin \beta }} + \frac{{\cos \beta \cdot \cos \beta }}{{\sin \beta \cdot \cos \beta }} = \\
\frac{{\sin ^2 \beta + \cos ^2 \beta }}{{\sin \beta \cdot \cos \beta }} = \\
\frac{1}{{\sin \beta \cdot \cos \beta }} = \\
\frac{2}{{2\sin \beta \cdot \cos \beta }} = \\
\frac{2}{{\sin 2\beta }} \\
\end{array}
$

Klaar!

WvR
maandag 29 april 2013

©2001-2024 WisFaq