Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 66490 

Re: Bepaal de afgeleide

Met de haakjes wegwerken heb ik een beetje moeite, zou je me op weg helpen? het begint wel een stuk duidelijker te worden.

Kan ik deze zo zien? sin2(x2) en dan de productregel toepassen. Op mijn oefenblad staat hij sin2x2.

erik
Leerling mbo - woensdag 4 januari 2012

Antwoord

De haakjes wegwerken gaat dan zo:

$
\eqalign{
& f'(x) = \frac{{\left( {4x - 4} \right)\left( {x - 1} \right) - (2x^2 - 4x + 2)}}
{{\left( {x - 1} \right)^2 }} \cr
& f'(x) = \frac{{4x^2 - 4x - 4x + 4 - 2x^2 + 4x - 2}}
{{\left( {x - 1} \right)^2 }} \cr
& f'(x) = \frac{{2x^2 - 4x + 2}}
{{\left( {x - 1} \right)^2 }} \cr
& f'(x) = \frac{{2\left( {x^2 - 2x + 1} \right)}}
{{\left( {x - 1} \right)^2 }} \cr
& f'(x) = \frac{{2\left( {x - 1} \right)^2 }}
{{\left( {x - 1} \right)^2 }} \cr
& f'(x) = 2 \cr}
$

Waarschijnlijk hadden we in het begin beter de functie meteen kunnen herleiden. Je krijgt dan zoiets:

$
\eqalign{
& f(x) = \frac{{2x^2 - 4x + 2}}
{{x - 1}} = \frac{{2\left( {x - 1} \right)^2 }}
{{x - 1}} = 2x - 2 \cr
& f'(x) = 2 \cr}
$

Dat gaat dan een stuk sneller...

Voor de tweede functie gebruik je twee keer de kettingregel.

$
\eqalign{
& f(x) = \sin ^2 \left( {x^2 } \right) = \left( {\sin \left( {x^2 } \right)} \right)^2 \cr
& f'(x) = 2\left( {\sin \left( {x^2 } \right)} \right) \cdot \cos \left( {x^2 } \right) \cdot 2x \cr
& f'(x) = 4x \cdot \sin \left( {x^2 } \right) \cdot \cos \left( {x^2 } \right) \cr}
$

Meer moet het niet zijn.
Helpt dat?

WvR
woensdag 4 januari 2012

©2001-2024 WisFaq