Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bepaal de afgeleide

f(x)=2x2-4x+2/x-1 ik heb hier de quotientregel genomen.

f'(x)=(x-1)x[2x2-4x+2]'-(2x2-4x+2)x[x-1]/(x-1)2
=(x-1)x(4x2-4x+2)-(2x2-4x+2)x[x-1]/(x-1)2

en nu raak ik het spoor een beetje kwijt, ga ik de goede kant op?

Zo heb ik ook moeite om de afgeleide te bepalen van sin2 x2, moet ik die apart nemen?

erik
Leerling mbo - dinsdag 3 januari 2012

Antwoord

Je kunt eens beginnen om geen 'x' te schrijven voor vermenigvuldigen! Schrijf liever '·'.

$
\eqalign{
& f(x) = \frac{{g(x)}}
{{h(x)}} \cr
& f(x) = \frac{{2x^2 - 4x + 2}}
{{x - 1}} \cr
& f'(x) = \frac{{g'(x) \cdot h(x) - g(x) \cdot h'(x)}}
{{(h(x))^2 }} \cr
& f'(x) = \frac{{\left( {4x - 4} \right)\left( {x - 1} \right) - \left( {2x^2 - 4x + 2} \right) \cdot 1}}
{{\left( {x - 1} \right)^2 }} \cr}
$

Haakjes wegwerken, gelijksoortige termen samennemen...
Zou dat lukken?

Zie ook 5. Quotiëntregel

PS
De laatste vraag moet je misschien even wat duidelijker formuleren!

PS2
De afgeleide van g(x)=2x²-4x+2 of h(x)=x-1 moet je eigenlijk in één keer foutloos kunnen opschrijven.

WvR
dinsdag 3 januari 2012

 Re: Bepaal de afgeleide 

©2001-2024 WisFaq