Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bepaal primitieve

f(x) = sin x · cos x

Hoe los je dit op ?

Marcel
Leerling mbo - woensdag 31 augustus 2011

Antwoord

Beste Marcel,

Om $\int \sin(x) \cdot \cos(x) dx$ te bepalen, kun je het beste gebruikmaken van de zogeheten substitutiemethode.
Je bekijkt de 2 functies en vraagt je af of je de afgeleide van één van de functies 'iets' te maken heeft met de andere functie. Zodat je de oorspronkelijke functie vereenvoudigt (door een van de functies te vervangen (= substitueren, vandaar de naam) door een variabele en de afgeleide van die variabele) en de primitieve dus eenvoudiger kunt bepalen.

In dit geval weet je dat (sin(x))' = cos(x).
Dus als je sin(x) gelijkstelt aan u(x), dan is $\frac{du}{dx} = \cos(x)$ oftewel $du = \cos(x) dx$.

De oorspronkelijke integraal $\int$ sin(x)·cos(x) dx is nu dus $\int$ u du geworden. Hiervan weet je dat de primitieve $\frac{1}{2}u^{2} + c$ is.
Nu rest alleen nog u te vervangen door de oorspronkelijke functie, te weten $u(x) = \sin(x)$, dus de primitieve luidt $\frac{1}{2}(\sin(x))^{2} + c$.

Mocht er nog iets onduidelijk zijn, reageer gerust!

Davy
woensdag 31 augustus 2011

 Re: Bepaal primitieve 

©2001-2024 WisFaq