Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 64109 

Re: Oplossen tweedegraads vergelijking

Het kan ook anders zijn met behulp van ABC formules:

x2+2.x.y+y2 = (x+y)2
x2-y2 = (x-y).(x+y)

oplossing
2x2+3x-2 = 2(x2+3/2.x-1) = 2(x2+2.3/4.x+9/16-9/16-1)
= 2{(x+3/4)2-9/16-1} = 2{(x+3/4)2-(5/4)2} =
= 2(x+3/4-5/4)(x+3/4+5/4) = 2(x-2/4)(x+8/4)
=(x-1)(x+2)
dus oplossingen van de vergelijking: 2x2+3x-2=0
zijn x1=1 en x2=-2

Talal
Docent - maandag 21 maart 2011

Antwoord

Deze methode van kwadraatafsplitsen kan natuurlijk ook, maar is helaas vrijwel verdwenen uit het middelbare onderwijs van nu. In een tijd dat rekenen niet erg populair is bij jonge mensen, geeft deze methode nogal wat problemen omdat er al gauw breuken optreden. Liever pakken ze dan de vrijwel direct de abc-formule en vragen zich zelfs niet even af of ontbinden ook mogelijk is.
Overigens zit er een foutje in je eigen uitwerking (en als docenten al foutjes maken, dan kun je begrijpen waarom leerlingen graag naar de formule grijpen!) want aan de vergelijking 2x2 + 3x - 2 = 0 voldoet natuurlijk niet x = 1.

MBL
maandag 21 maart 2011

©2001-2024 WisFaq