Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 59711 

Re: Inhoud bol als som van een aantal schijven

Ik snap dat de methode van een omwentelingslichaam werkt. Maar ik begrijp niet dat 'mijn' methode niet werkt. D.w.z. zo'n frapant verschil oplevert. Ook als ik 'zelf' aan het integreren sla m.b.v. de GR:

0 $\to$ D
for (I,0,6,0.006)
D + pi · I2 · 0.006 $\to$ D
end

krijg ik hetzelfde antwoord.
Een klein verschil kan ik verklaren, dat is ook het geval met de Riemannsommen. Maar zo'n groot - en frapant - verschil niet...

Martij
Iets anders - woensdag 24 juni 2009

Antwoord

Hallo

Dit algoritme klopt inderdaad niet.
De straal van de schijven neemt met een vaste waarde toe, gelijk aan de hoogte van de schijf.
Deze stapeling vormt geen halve bol, maar een kegel met hoogte r (straal).
De inhoud van deze kegel (1/3$\pi$r3) is inderdaad de helft van de inhoud van de halve bol (2/3$\pi$r3).

LL
woensdag 24 juni 2009

©2001-2024 WisFaq