Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 59623 

Re: Herhaald partieel integreren

Hoi Tom!

Bedankt voor je antwoord. Ik heb het geprobeerd, maar kom nog steeds op het foute antwoord uit. Wat ik namelijk heb gedaan is het volgende:

Dxln2(x)dx = [(1/2)x2ln2(x)]-ò(1/2)x2·(1/(x2))dx=[(1/2)x2ln2(x)]-ò(1/2)dx=(1/2)e2ln2(e)-(1/2)·12·ln2(1)-(1/2)e+(1/2)·1+c=(1/2)e2·12-(1/2)·02-(1/2)e+(1/2)+c=(1/2)e2-(1/2)e+(1/2)+c.

Het antwoord blijkt volgens het antwoordenboekje echter
(1/4)e2-(1/4) te zijn. Hoe kan dit?

Groeten, Lynn

Lynn
Leerling bovenbouw havo-vwo - zondag 14 juni 2009

Antwoord

Beste Lynn,

Je notatie vind ik dit keer wat onduidelijk. Na die eerste partiële integratie blijft er wel nog een ln staan, de afgeleide van ln2x is 2.ln(x)/x zodat je samen met de x2 iets van de vorm x.ln(x) krijgt: daarop moet je nog eens partiële integratie toepassen.

mvg,
Tom

td
zondag 14 juni 2009

©2001-2024 WisFaq