Heb volgend probleem waar ik 1 en 2 denk ik kan van oplossen. In een balk ABCD.EFGH zijn volgende lengten gegeven: AB=12, BC=3 en CG=4. Het punt P is het midden van het lijnstuk FH.
1) Bereken de oppervlakte van driehoek BHP 2) Bereken de lengte van BH 3) De lijn DP snijdt BH in S. Bereken BS en HS
1) opp= 1/2 FB.HP = 1/2·4·Ö(153)/2=Ö(153) 2) BH = Ö(16+153)=13 3)? Moet ik hoeken bereken eerst? Maar slechts 2 zijden van die willekeurige driehoek gekend?
Vannes
3de graad ASO - dinsdag 6 januari 2009
Antwoord
Bekijk het geheel in vlak DBFH. Omdat HF evenwijdig is met DB zijn de driehoeken DSB en PSH gelijkvormig. Omdat P het midden is van FH geldt dat HP:DB=1:2. Dus ook HS:SB=1:2. Dus HS=1/3BH en SB=2/3BH. BH had je al uitgerekend bij 2).