Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 57502 

Re: Toppen

g'(x) = 2cos(2x) + sin(x)
= 2- 2 sin.2..(x) + sin(x)
= -2 sin.2..+ sin(x) + 2
Stel sin(x) = y
-2y.2..+ y + 2 = 0
y = (-1 + Ö17) :-4 v y = (-1 - Ö17) : -4
Deze laatste voldoet niet.
De andere y geeft als oplossing voor x= 4,04 v 5,38 en de 2 twee andere toppen vind ik niet!
Wat doe ik fout???

Katrij
Leerling bovenbouw havo-vwo - woensdag 10 december 2008

Antwoord

g(x)=sin(2x)-cos(x) met Df=[0,2p]
g'(x)=2cos(2x)+sin(x)
g'(x)=0 voor:

2cos(2x)+sin(x)=0
2(1-2sin2(x))+sin(x)=0
2-4sin2(x)+sin(x)=0
Neem y=sin(x)
2-4y2+y=0
y-0.5930703308 of y0.8430703308
En dat geeft twee oplossingen die wel voldoen... die elk ook weer twee oplossingen geven op het domein, dus in totaal vier oplossingen.
...en dan lukt het vast.

Die ' y0.8430703308' geeft je de 'gezochte' x-waarden.

WvR
woensdag 10 december 2008

©2001-2024 WisFaq