Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Integreren van goniometrische functie

Beste wisfaq,
ik weet niet of ik de juiste benadering gebruik voor het oplossen van de integraal:
òx2·Ö4-x2dx
hierbij gebruik ik de goniometrische substitutie.
ik stel: x=2sinv
dus: x^2=4sin2x
en dx=2cosvdv
verder geldt dat sinv=(x/2) en cosv=(Ö4-x^2 / 2

dan volgt:
òx2·Ö4-x2dx=4sin2Ö(4-4sinv) · 2cosvdv=
8òsin2vcosv·Ö(4-4sinv)dv=
8òsin2vcosv·2|cosv|dv=16òsin2vcos2vdv=
.....
16(1/8 · v - 1/32 · sin(4v))+C

hier moet ik sin4v vereenvoudigen, maar dit lukt mij niet!?!
als ik de som en verschil formule toepas, wordt mijn oplossing niet eenvoudiger:
sin(4v)=sin2v*cos2v+cos2v*sin2v=sin22v*cos2v
kunt u mij helpen om de oplossing te vinden?
en is er een standaard formule
om sin(ax) om te zetten naar sinxcosx
(denkend aan) sin2x=2sinxcosx

bvd,

Carlos

carlos
Student universiteit - zondag 9 december 2007

Antwoord

Carlos,
sin4v=2sin2vcos2v=4sinvcosv(1-2sin2v)=4(x/2)(Ö(4-x2)/2)(1-2x2/4).
Hopelijk zo tevreden.

kn
zondag 9 december 2007

 Re: Integreren van goniometrische functie 

©2001-2024 WisFaq