Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 52372 

Re: Re: Re: Re: Bewijs oppervlakte vierhoek ABCD mbv sinus

In een koordenvierhoek geldt: pq=AD·BC + AB·CD
Oftewel: (AS+SC)·(DS+BS) = AD·BC + AB·CD
Hoe bewijs je HIERUIT dan dat :AS·SC=BS·SD ?

Herman

Herman
Leerling bovenbouw havo-vwo - zaterdag 6 oktober 2007

Antwoord

Herman,

Het bewijs van de stelling van Ptolemaeus kon je zien in:

http://www.pandd.demon.nl/sinregel.htm

Deze vraag komt neer op het omgekeerde bewijs van die stelling:
Als het product van de diagonalen van een vierhoek gelijk is aan de som van de producten van de overstaande zijden, dan is het een koordenvierhoek.
Dat is inderdaad waar, maar veel lastiger te bewijzen.
Zie ook:
http://en.wikipedia.org/wiki/Ptolemy%27s_theorem#Proofs

en voor het bewijs:

http://planetmath.org/encyclopedia/ProofOfPtolemysInequality.html

Er geldt:Het product van de overstaande zijden is groter, of gelijk aan het product van de diagonalen.
Als het gelijk is,dan is het een koordenvierhoek.
In elke andere vierhoek is het product van de overstaande zijden dus groter dan het product van de diagonalen.

Jij begint met het gegeven: pq=AD*BC+AB*CD.
Daaruit volgt dan dat de hoekpunten op een cirkel liggen.
En daarmee bewijs je via gelijkvormigheid dat AS*SC=BS*SD.

ldr
zaterdag 6 oktober 2007

©2001-2024 WisFaq