Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Functievoorschrift van een homografische functie opstellen

Hoi ik heb een vraagje,

Ik moet het functievoorschrift van een homografische functie opstellen met de volgende gegevens:

Horizontale asymptoot: y=2
Nulpunt van de functie: $\frac{1}{3}$
Punt A op de grafiek met co(A)=(-1,-8)

Weten jullie hoe dit moet?

Kevin
3de graad ASO - maandag 1 oktober 2007

Antwoord

Ja hoor, geen punt...

Een homografische functie is een functie van deze vorm:

q52317img1.gif

De kunst is dan om de gegevens te vertalen naar de waarden van a, b, c en d.

Uit 'y=2 is horizontale asymptoot' kan je concluderen dat a=2c (waarom?)

Uit f$(\frac{1}{3})$=0 kan je concluderen dat 1/3a+b=0 (waarom?)

Stel je nu eens voor dat ik a=6 zou kiezen, dan is c=3 en b=-2. Dan blijft alleen nog d over om te kiezen en wel zo dat f(-1)=-8. Invullen?

q52317img2.gif

Dus ik zou zeggen dat dit functievoorschrift zou moeten kunnen:

q52317img3.gif

Plaatje?

q52317img4.gif

Dat is vast goed... controleer maar!

De vraag is dan 'waarom neem ik a=6'? Kan dat zomaar? Had ik niet net zo goed a=1 kunnen nemen? Denk er maar 's over na!

WvR
maandag 1 oktober 2007

Re: Functievoorschrift van een homografische functie opstellen

©2001-2024 WisFaq