Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Afgeleide nodig voor keerpunten

mijn parametervoorstelling

x = t + sin(t)
y = 1 + cos(t)

hiervan moet ik de afgeleide bereken?

komt dat neer op

x = 1+ cos(t)
y = -sin(t)

of zit ik er helemaal naast?

geert
Leerling bovenbouw havo-vwo - donderdag 31 mei 2007

Antwoord

Beste Geert,

Je afgeleiden kloppen, maar die kan je dan niet meer gewoon "x" en "y" noemen. Als x = t+sin(t) dan is dx/dt = 1+cos(t). Voor dx/dt wordt ook wel de notatie x' gebruikt. Hetzelfde bij y, voor de afgeleide bedoel je y' of dy/dt, de berekening is wel juist.

mvg,
Tom

td
donderdag 31 mei 2007

 Re: Afgeleide nodig voor keerpunten 

©2001-2024 WisFaq