Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 42910 

Re: Sommaties

Bedankt voor je antwoord. Maar bedoel je niet dat uit
kln(k) $>$ ln3(k) $\Rightarrow$ 1/(kln(k)) $<$ 1/ln3(k)? (typefoutje misschien?)
En hoe zie je in dat kln(k) $>$ ln3(k)?
Groetend

Steven
Student universiteit - vrijdag 13 januari 2006

Antwoord

Beste Steven,

Dat is inderdaad een typfoutje, zo is het natuurlijk onzin. De hele bedoeling was een divergene minorante te vinden uiteraard, ik pas het aan.

Om die afschatting te zien kan je natuurlijk grafisch kijken, maar het kan ook zonder. De gemeenschappelijke factor ln(k) kunnen we eventueel laten vallen als we dan kunnen aantonen dat k ln2(k), minstens vanaf een zekere k.
Merk op dat k gewoon de eerste bissectrice voorstelt (cfr. de lijn y = x), dus monotoon stijgend is en steeds richtingscoëffiënt 1 heeft.
De afgeleide van ln2k is 2ln(k)/k en vermits k veel sneller stijgt dan ln(k) zal die uitdrukking kleiner zijn dan 1. Meer nog, in de limiet voor k®¥ krijg je zelfs 0.

mvg,
Tom

td
vrijdag 13 januari 2006

©2001-2024 WisFaq