Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

Bewijs voor de stelling van Wolf

Ik heb de opdracht gekregen om de stelling van Wolf uit te zoeken.
De gegevens zijn: rechthoekige driehoek ABC met een ingeschreven cirkel die de driehoek raakt op P, Q en R.
Te bewijzen: opp. ABC= AP·PB

Ik kom hier echter niet uit...

opp ABC= ½·AC·CB
opp ABC=½·AC·(CQ+QB)
QB=PB (bissectrice)
opp ABC= ½·AC·(CQ+PB)
opp ABC= ½·(AR+RC)·(CQ+PB)
AB=AP (bissectrice)
opp ABC= ½·(AP+RC)·(CQ+PB)
CR=CQ
opp ABC= ½·(AP+CQ)·(CQ+PB)

Jerney
Leerling bovenbouw havo-vwo - zaterdag 24 augustus 2002

Antwoord

Je bent een aardig eind op weg. Bedenk dat je ook nog de stelling van Pythagoras kunt gebruiken:
AB2 = AC2 + CB2
ofwel
(AP + PB)2 = (AR + RC)2 + (CQ + QB)2
Werk de haakjes weg en gebruik de bisectrice-eigenschap om factoren tegen elkaar te laten wegvallen en probeer de overige stukjes in het plaatje hieronder in te passen.
Applet werkt niet meer.
Download het bestand.

wh
maandag 26 augustus 2002

©2001-2024 WisFaq