Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 27354 

Re: Stelsel differentiaalvergelijkingen oplossen

Oke, dit is leuk. Maar nu het volgende probleem: Het zelfde stelsel maar dan inhomogeen gemaakt door uit te bereiden met constanten en weglating van de DV voor z(t):
x'(t) = 3x(t) +a
y'(t) = 3y(t) +b

Wie kan mij hier mee helpen???

Alvast bedankt, groeten Piet

Piet
Student universiteit - donderdag 26 mei 2005

Antwoord

dag Piet,

De systematiek is analoog aan de methode van een enkele lineaire differentiaalvergelijking.
Je lost eerst het homogene deel op, op de manier zoals in het vorige antwoord is beschreven.
Vervolgens zoek je een particuliere oplossing in de vorm van constanten, en deze particuliere tel je op bij de homogene oplossing, en klaar is Kees.
Overigens is er in het voorbeeld dat je geeft niet echt sprake van een stelsel, omdat elk van de twee vergelijkingen zelfstandig op te lossen is. Het hoeft niet simultaan, omdat elke vergelijking maar één afhankelijke variabele heeft.
succes,

Anneke
donderdag 26 mei 2005

 Re: Re: Stelsel differentiaalvergelijkingen oplossen 

©2001-2024 WisFaq