Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 16011 

Re: Goniometrische vergelijkingen

ja, allemaal correct
maar toch lukt het mij niet. Ik weet niet welke combinatie uitkomt.Ik heb ze al allemaal geprobeer, toch wil het maar niet lukken.. dit is heel frustrerend

Christ
3de graad ASO - maandag 10 november 2003

Antwoord

sin(x)=sin(x)
sin(2x)=2sin(x)cos(x)
sin(3x)=sin(x)cos(2x)+sin(2x)cos(x)=sin(cos2(x)-sin2(x))+(2sin(x)cos(x))cos(x)=3sin(x)cos2(x)-sin3(x)

sin(x)+sin(2x)+sin(3x)=
=sin(x)+2sin(x)cos(x)+3sin(x)cos2(x)-sin3(x)=
=sin(1+2cos(x)+3cos2(x)-sin2(x))=
=sin(1-sin2(x)+2cos(x)+3cos2(x))=
=sin(cos2(x)+2cos(x)+3cos2(x))=
=sin(4cos2(x)+2cos(x))=
=2sincos(2cos+1)

cos(2x)=cos2(x)-sin2(x)
1+cos(2x)=1+cos2(x)-sin2(x)=sin2(x)+cos2(x)+cos2(x)-sin2(x)=2cos2(x)
1+cos(2x)+cos(x)=2cos2(x)+cos(x)=cos(2cos+1)

...en daarmee zijn ze dus niet aan elkaar gelijk (het scheelt een factor sin(x))

MvdH
donderdag 13 november 2003

©2001-2024 WisFaq