Beide sommen in de uitdrukking voor de noemer volgen nu door in (1) en (2) x=1/2 te stellen. Uiteindelijk bekom je het leuke resultaat dat
NOEMER = 2n
Bekijken we nu de combinatie van teller en noemer, dan kunnen we concluderen dat, aangezien √3 $<$ 2, de limiet nul zal zijn, onafhankelijk van de waarde van a (het was leuker geweest indien het grondtal in de teller groter was geweest dan 2, dan hadden we een uitzondering moeten maken voor het geval a=-1/2)
Als er iets onduidelijk is, zeg je het maar...
PS: Ik vermoed dat deze oefening een aardigheidje is van iemand, en echt geen achtergrond heeft he? Of wel?