Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 14204 

Re: Limieten berekenen van machten met reële exponenten

Ehhhh... zover was ik min of meer ook geraakt, maar wat vang je dan aan met dat minteken tussen de haakjes? Om het getal e te krijgen als resultaat van een limiet zou er toch moeten staan (1+1/y)^y en niet (1-1/y)^y? Oh ja, en bedankt voor je reactie he! Groeten, Anneke

Ann
2de graad ASO - donderdag 11 september 2003

Antwoord

In algemene formule geldt dat lim y®¥ (1+a/y)y=ea dus
lim y®¥ (1-1/y)y = e-1 = 1/e.
Dat is ook wel te bewijzen uitgaande van lim y®¥ (1+1/y)y=e.

Nu ben je er dus bijna, lukt het nu wellicht ?

Met vriendelijke groet

JaDeX

jadex
vrijdag 12 september 2003

©2001-2024 WisFaq