De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Bepaal een primitieve

 Dit is een reactie op vraag 88475 
Sorry ik kom dan toch niet verder:

$\int{}$x/(cos2x2)dx=$\int{}$1/2(2x)/(cos2x2)dx=$\int{}$1/2x/cos2x2d(2x)=?

mboudd
Leerling mbo - vrijdag 20 september 2019

Antwoord

Als het goed is herken je de afgeleide van $\tan(x)$ en dan nog iets met de kettingregel...! Dus gebruik de substitutiemethode. Zeker in het begin is het niet verkeerd dat netjes uit te schrijven. Je was wel al aardig op weg:

$
\eqalign{
& \int {\frac{x}
{{\cos ^2 (x^2 )}}} \,\,dx = \cr
& \int {\frac{1}
{2} \cdot \frac{1}
{{\cos ^2 (x^2 )}}} \cdot 2x\,\,dx = \cr
& \int {\frac{1}
{2} \cdot \frac{1}
{{\cos ^2 (x^2 )}}} \,\,d\left( {x^2 } \right) = \cr
& Neem\,\,u = x^2 : \cr
& \int {\frac{1}
{2} \cdot \frac{1}
{{\cos ^2 \left( u \right)}}du} = \cr
& \frac{1}
{2}\tan \left( u \right) + C = \cr
& \frac{1}
{2}\tan \left( {x^2 } \right) + C \cr}
$

Je moet dan wel de bekende afgeleide kennen en herkennen. Helpt dat?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 20 september 2019
 Re: Re: Bepaal een primitieve  



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3