De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Oppervlakte deel van cirkel berekenen

 Dit is een reactie op vraag 67178 
Bedankt voor je vlotte reactie.

De straal wist ik al. Maar omdat wij werken met veel variabelen heb ik de straal liever als een letter in de formule.

ik heb een cirkel met opp 60m2 in deze cirkel zit een lijn L loodrecht op de straal welke de cirkel scheid in 2 delen A en B. (A aanzienlijk kleiner dan B) Opp. deel A is dan 20m2 en logischerwijs is opp. deel B dan 40m2.

Hoe bereken ik waar het snijpunt van Lijn L met de straal zich bevindt?

Hooghi
Student hbo - maandag 19 maart 2012

Antwoord

Teken in een gewoon assenstelsel een cirkel met oppervlakte 60 rond de oorsprong.
Lijn L denk ik me (verticaal) rechts van de oorsprong getekend.
De oppervlakte van het gebied dat wordt ingesloten door de x-as, de y-as, lijn L en de cirkel is dan gelijk aan 5.
De bovenhelft van de cirkel heeft als vergelijking y = Ö(r2 - x2)
Als ik aanneem dat het een probleem is uit de integraalrekening, dan komt het neer op het oplossen van de vergelijking òÖ(r2 - x2) dx = 5 waarbij de ondergrens 0 is en de bovengrens p.
Het getal p is dan in feite de eerste coördinaat van het snijpunt van L en de x-as.
Bedenk dat je r en dus ook r2 weet vanwege de gegeven oppervlakte.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 19 maart 2012



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3