De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vergelijking van een rechte met een evenwijdige

Hoe bepaal ik de vergelijking van de rechte die door het punt (0,3) gaat en evenwijdig is met de rechte door de punten (2,0) en (5,2).

Ik dank u bij voorbaat

linda
Leerling bovenbouw havo-vwo - dinsdag 27 augustus 2002

Antwoord

Als je lijn die je zoekt evenwijdig loopt aan de rechte door (2,0) en (5,2), dan betekent dat dat ze dezelfde richtingscoefficient hebben.

Laten we die eerst maar eens gaan uitrekenen.

de rico = $\Delta$y/$\Delta$x = (2-0)/(5-2) = 2/3

de algemene vergelijking van een rechte lijn is
y=ax+b waarbij a de rico is.
Deze weten we dus al.

Jouw lijn luidt vooralsnog y=2/3x+b

Nou alleen de b nog vinden en dan zijn we klaar.

Daartoe moet je het punt invullen waar jouw lijn doorheen loopt:

3=2/3·0 + b $\to$ b=3

en dus is y=2/3x+3

groeten,

martijn

mg
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 27 augustus 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3