De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Phi en piramides

Hallo, ik heb een vraag over de stelling van Pythagoras en een piramide.

Ik heb een dwarsdoorsnede van de piramide. Dus een driehoek. De hellingshoek die de schuine valkken van de piramide maken is 51.85°. Hierin is a (rechtsonder) 51.85°. Wanneer je de schuine zijde lengte 1 geeft, dan kan je uitrekenen dat de horizontale zijde, dat is de halve breedte van de piramide, de lengte van phi heeft. Hoe kan ik dit berekenen?

Anniek
Leerling bovenbouw havo-vwo - zaterdag 23 februari 2002

Antwoord

In een tekening ziet het er zo uit:

q1656img1.gifq1656img2.gif

Hierin is a=51,85°. Wanneer we nu een schuine zijde lengte 1 geven, dan kun je uitrekenen dat de horizontale zijde – dat is de halve breedte van de piramide – lengte j heeft:

cos 51,85°=j/1
j=cos 51,85°=0,6177

Het is dus zo dat j 'de lengte van phi heeft'.

Zie De Grote piramide van Gizeh

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 24 februari 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3