Regels voor de afgeleide:
-
$f(x)=a$ geeft $f'(x)=0$
-
$f(x)=ax$ geeft $f'(x)=a$
-
$f(x)=ax^2$ geeft $f'(x)=2ax$
-
...
-
$f(x)=ax^n$ geeft $f'(x)=n\cdot ax^{n-1}$
Voorbeelden
-
$f(x)=3x^6$ geeft $f'(x)=6\cdot 3x^5=18x^5$
-
$g(x)=px^2$ geeft $g'(x)=2px$
Tip
Soms is het handig om een functievoorschrift eerst te vereenvoudigen of handiger op te schrijven.
Voorbeelden
$
\begin{array}{l}
f(x) = (x - 4)(x + 5) \\
\to f(x) = x^2 + x - 20 \\
geeft\,\,f'(x) = 2x + 1 \\
\end{array}
$
$
\begin{array}{l}
g(x) = x^2 (3 - x)^2 \\
\to g(x) = 9x^2 - 6x^3 + x^4 \\
geeft\,\,g'(x) = 18x - 18x^2 + 4x^3 \\
\end{array}
$
$
\begin{array}{l}
h(x) = \frac{{3x^3 - 4x^6 }}{{x^2 }} \\
\to h(x) = 3x - 4x^4 \\
geeft\,\,h'(x) = 3 - 16x^3 \\
\end{array}
$
$
\begin{array}{l}
i(x) = x^2 \sqrt x - x\sqrt[3]{x} \\
\to i(x) = x^{2\frac{1}{2}} - x^{1\frac{1}{3}} \\
geeft\,\,i'(x) = 2\frac{1}{2}x^{1\frac{1}{2}} - 1\frac{1}{3}x^{\frac{1}{3}} \\
i'(x) = 2\frac{1}{2}x\sqrt x - 1\frac{1}{3}\sqrt[3] x \\
\end{array}
$