Nog een paar voorbeelden...
\eqalign{ & f(x) = - \frac{1} {{3x^{2} }} = - \frac{1} {3}x^{ - 2} \to f'(x) = - \frac{1} {3} \cdot - 2 \cdot x^{ - 3} = \frac{2} {{3x^{3} }} \cr & g(x) = 2 - \frac{1} {{\left( {3x} \right)^{3} }} = 2 - \left( {3x} \right)^{ - 3} \to g'(x) = - - 3 \cdot \left( {3x} \right)^{ - 4} \cdot 3 = \frac{9} {{\left( {3x} \right)^{4} }} \cr & of\,\,beter: \cr & g(x) = 2 - \frac{1} {{\left( {3x} \right)^{3} }} = 2 - \frac{1} {{27}}x^{ - 3} \to g'(x) = - \frac{1} {{27}} \cdot - 3x^{ - 4} = \frac{1} {{9x^4 }} \cr}
En nog zo iets....
\eqalign{ & y = \frac{{x^{2} }} {{\root 3 \of x }} = \frac{{x^{2}}} {{x^{\frac{1} {3}} }} = x^{2} \cdot x^{ - \frac{1} {3}} = x^{1\frac{2} {3}} = x^{\frac{5} {3}} \cr & y' = \frac{5} {3}x^{\frac{2} {3}} = \frac{5} {3}\root 3 \of {x^{2}} \cr}

©2004-2025 WisFaq