\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Raaklijn

Op een hyperbool A nemen we een willekeurig punt D. De raaklijn in D aan H snijdt de asymptoten in E en E2. Bewijs dat D het midden is van EE2. Beste kan u aub mij helpen met deze vraag oplossen.

3de graad ASO - donderdag 29 april 2021

Antwoord

We gaan uit van een hyperbool $\eqalign{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1}$.
De asymptoten zijn $\eqalign{y=\pm\frac{b}{a}x}$.
Laten we $D(p,q)$ als co÷rdinaten nemen.

De raaklijn aan $D$ is $\eqalign{\frac{px}{a^2}-\frac{qy}{b^2}=1}$, ofwel
$$b^2px-a^2qy=a^2b^2. \,\, [1]$$Substitueren we $y=\frac{b}{a}x$ in [1] dan geeft dat
$$b^2px-a^2q\frac{b}{a}x=a^2b^2$$dus
$$b^2px-abqx=a^2b^2$$$$(bp-aq)x=a^2b$$$$x=\frac{a^2b}{bp-aq}.$$De $x-$co÷rdinaat van het snijpunt met de asymptoot $y=-\frac{b}{a}x$ gaat op dezelfde manier en wordt
$$x=\frac{a^2b}{bp+aq}.$$Het gemiddelde van deze twee $x-$co÷rdinaten is .... $p$! En we hebben het gevraagde bewijs. Het rekenwerk voor de laatste stap laat ik aan jou over. Mocht je daarbij nog hulp nodig hebben, dan hoor ik het graag.

Met vriendelijke groet,


vrijdag 30 april 2021

©2004-2021 WisFaq