Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Meetkunde

Oppervlakte en inhoud

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat


\require{AMSmath}

 Dit is een reactie op vraag 87962 

Re: Limiet bepalen

Zou het ook op een andere manier kunnen?

Max
Student universiteit - zondag 28 april 2019

Antwoord

's Kijken of het ook zonder l'Hopital kan:

$
\eqalign{
& \mathop {\lim }\limits_{x \to 0} \frac{{2x}}
{{\root 3 \of {x + 27} - 3}} = \cr
& Neem\,\,y = \root 3 \of {x + 27} \to x = y^3 - 27 \cr
& \mathop {\lim }\limits_{x \to 0} \frac{{2x}}
{{\root 3 \of {x + 27} - 3}} = \cr
& \mathop {\lim }\limits_{y \to 3} \frac{{2\left( {y^3 - 27} \right)}}
{{y - 3}} = \cr
& \mathop {\lim }\limits_{y \to 3} 2y^2 + 6y + 18 = 54 \cr}
$

Dat kan. Helpt dat?

WvR
zondag 28 april 2019

©2001-2024 WisFaq