De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Vijf jagers schieten op vijf fazanten

 Dit is een reactie op vraag 92705 
Bedankt voor de tip.

Het lukt inderdaad met die Stirlinggetallen van de tweede soort. Ik had er nog nooit van gehoord; er wordt ook geen melding van gemaakt in ons handboek.

Men lost het in de verbetersleutel van het handboek op met combinaties maar volgens mij kloppen niet alle berekeningen daarin.



Daarom stuur ik hun voorgestelde antwoord zodat je kan zien dat er iets schort aan hun antwoord.
Martin

Martin
3de graad ASO - vrijdag 24 september 2021

Antwoord

De antwoorden kloppen; hun strategie is net iets anders maar komt op hetzelfde neer: kies $k$ fazanten, dat kan op $\binom 5k$ manieren en tel dan het aantal manieren waarop die vijf jagers zo kunnen schieten dat elk van die fazanten geraakt zal worden.

Je krijgt dan
$$\binom 5k\times\sum_{i=0}^k(-1)^i\binom ki\cdot (k-i)^5
$$dat kun je omschrijven tot
$$\frac{5!}{(5-k)!}\times \frac1{k!}\sum_{i=0}^k(-1)^i\binom ki\cdot (k-i)^5
$$en daar staat $\eqalign{\frac{5!}{(5-k)!}\times S_2(5,k)}$.

Op het plaatje lijken de berekeningen iets meer ad hoc, maar de antwoorden kloppen.

Naschrift: de berekening bij vier fazanten klopt niet. De gegeven teller, $\binom54(4\binom52-3\cdot2\cdot1)$, is gelijk aan $5\cdot34$ en dat leidt niet tot het juiste antwoord; ik denk dat dat een tikfout is.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 25 september 2021
 Re: Re: Vijf jagers schieten op vijf fazanten 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3