De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Duo casus mondeling

Volgende week vrijdag heb ik een toets voor mijn wiskunde B mondeling, en voor het eerste deel moet ik een casus maken. Nou heeft duo een voorbeeldcasus online gezet, maar zonder uitwerkingen. Tot nu toe is het allemaal wel gelukt, behalve opgave 4. Mijn vraag is dan ook hoe ik deze op moet lossen. Ik heb al wel gekeken naar de afgeleide gelijk te stellen aan a, maar het moet om een lijn gaan en daar loop ik vast.

Opgave 4

$
{\text{f(x) = x}}^{\text{4}} - 3x^3
$

Er zijn drie lijnen door het punt B(7, 0) die de grafiek van f raken. Bereken algebraÔsch de coŲrdinaten van de raakpunten.

Anton
Leerling bovenbouw havo-vwo - vrijdag 9 juli 2021

Antwoord

Je hebt y=x4-3x3.
De vergelijking van de raaklijn is y=a(x-7).

De afgeleide van f is f '(x)=4x3-9x2
Voor raken moet dus gelden f '(x)=a
Conclusie 4x3-9x2=a
Vul nu a=4x3-9x2 en y=x4-4x3 in in vergelijking van de raaklijn en los de vergelijking in x die je krijgt op.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 9 juli 2021
 Re: Duo casus mondeling 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3