De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Basis orthogonaal complement kern

Hallo,

Ik vroeg mij af hoe je op een snelle manier een basis kon vinden voor het orthogonaal complement van de kern van een matrix. Ik weet hoe je de dimensie van de basis kunt berekenen namelijk door dim(ker(A))+dim(orthogonaal complement van ker(A))=aantal kolommen, maar ik snap niet goed hoe ik nu een basis kan vinden voor het orthogonaal complement van ker(A). Zou iemand mij kunnen helpen?

Met vriendelijke groeten,
Marie

Marie
Student universiteit BelgiŽ - zaterdag 9 januari 2021

Antwoord

De rijen van de matrix $A$ spannen het orthogonaal complement van $\mathrm{Ker}\,A$ op; je moet dus een basis van de rijruimte hebben, en die vind je (ook) door middel van Gauss-eliminatie.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 9 januari 2021



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3