![]() |
De digitale vraagbaak voor het wiskundeonderwijshome | vandaag | gisteren | bijzonder | gastenboek | wie is wie? | verhalen | contact |
|||||||||||||||||
|
\require{AMSmath}
![]() ![]() ![]() Bewijs vierkantswortel 2 irrationaalIn het bewijs dat er geen a $\in$ $\mathbf{Q}$ bestaat zodat a2 = 2 nemen we a = m/n met m,n $\in$ $\mathbf{N}$/{0}. Waarom niet m,n $\in$ $\mathbf{Z}$ volgens de definitie van rationale getallen? Want de voorwaarde die we gebruiken is toch strikter? Dus bewijzen we toch dat er geen a bestaat met m,n $\in$ $\mathbf{N}$ en niet voor a met m,n $\in$ $\mathbf{Z}$ ? Dank bij voorbaat. AntwoordDat kun je doen, maar omdat $(m/n)^2=(-m/n)^2$ kunnen we aannemen dat $m/n$ positief is, dan volgt meteen dat $m$ en $n$ hetzelfde teken moeten hebben en dan kunnen we ze net zo goed positief nemen.
![]() ![]() ![]() home | vandaag | bijzonder | gastenboek | statistieken | wie is wie? | verhalen | colofon ©2001-2025 WisFaq - versie 3 |