De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Re: Steekproefverdeling

 Dit is een reactie op vraag 86565 
Ik begrijp het! Nog één vraagje: hoe groter de steekproefomvang, hoe betrouwbaarder het resultaat MAAR toch mag de steekproefomvang niet te groot zijn, niet meer dan 1/10 van de populatie?

OPA
3de graad ASO - woensdag 18 juli 2018

Antwoord

Hallo Odile,

Je mag gerust een steekproef nemen die groter is dan 1/10 van de populatie, maar dan mag je de kansverdeling voor de verschillende mogelijke uitkomsten niet benaderen met een binomiale verdeling. Immers, bij een binomiale verdeling moet de kans op succes voor elke waarneming constant blijven. Als je te veel elementen uit je populatie haalt, dan is de kans op succes niet constant.

Een eenvoudig voorbeeld illustreert dit:
Stel dat je wil onderzoeken hoeveel leerlingen van pindakaas houden. Dit is 25% (maar dat weten we nog niet ). In een klas van 20 leerlingen die toevallig volledig representatief is, houden 5 leerlingen van pindakaas.
Wanneer we een steekproef nemen van 6 leerlingen, en we benaderen de mogelijke uitkomsten met de binomiale verdeling, dan zou er een kans zijn van 0,256 dat we 6 leerlingen aantreffen die van pindakaas houden. Dat kan natuurlijk niet: na 5 keer 'succes' zijn de leerlingen die van pindakaas houden op. De kans op succes is dan nul geworden. Omdat we de steekproef groot maken ten opzichte van de populatie (30%), beïnvloeden de waarnemingen de samenstelling van de populatie.

Wanneer we nu onderzoek doen op de hele school met 600 leerlingen (waarvan toevallig precies volgens verwachting 150 leerlingen van pindakaas houden), dan maakt het voor de samenstelling van de populatie niet zoveel uit wanneer we hier 6 leerlingen uit halen. Zelfs wanneer alle 6 leerlingen van pindakaas houden, dan is de kans op succes voor de 7e leerling nog 144/600=0,24. Niet helemaal constant, maar het blijft in de buurt.

Terug naar de klas met 20 leerlingen: wanneer je steekproef te groot is ten opzichte van de populatie, dan volgt het aantal leerlingen dat van pindakaas houdt een Hypergeometrische verdeling. Stel dat 5 leerlingen wel van pindakaas houden en 15 leerlingen niet, je neemt een steekproef van 6 leerlingen. De kans dat je (als voorbeeld) 4 leerlingen treft die van pindakaas houden (en dus 2 leerlingen die niet van pindakaas houden), bereken je dan met:

OK zo?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 18 juli 2018
 Re: Re: Re: Steekproefverdeling 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2018 WisFaq - versie IIb