De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Formule opstellen

 Dit is een reactie op vraag 85824 
Ik weet niet zo goed waar ik moet beginnen. In de f(x) zie ik niet goed wat de a, x en b is. Moet ik beginnen met de afgeleide of is dit helemaal niet nodig?

Kaylee
Leerling bovenbouw havo-vwo - dinsdag 13 maart 2018

Antwoord

Dag Kaylee,

Dit keer een wat langer antwoord, dan het eerste.

Om te beginnen. Je weet toch dat de algemene vergelijking van een rechte lijn $y = ax + b$ is (of zo je wilt, $y = mx + n$ of $y = px + q$)?

Daarin is het getal $a$ de richtingscoŽfficiŽnt (richtingsgetal).

Heb je $b$ al uitgerekend? Ik kom op $b = -3a$, en daarmee is de gezochte vergelijking van de raaklijn:
$y = ax - 3a$
Vul $x = 3$ in en je vindt $y = 0$, want de lijn gaat door (3, 0).
Jammer dat je $a$ niet weet!

En daarom moet je gebruik maken van de afgeleide $f\;'$ van $f$, omdat de afgeleide de 'leverancier' is van de richtingscoŽfficiŽnten (richtingsgetallen) van raaklijnen aan de grafiek van $f$.

Helaas, je kent het raakpunt niet. Daarom nam ik daarvoor $(p, q)$.
Dan is:
$f\;'(p) = a$
Ik zag bij een ander WisFaq-antwoord dat je had gevonden:
$f\;'(x) = (3 - 2x){e^x}$

Dus:
(1)... $f\;'(p) = (3 - 2p){e^p} = a$
Maar er is nog wat. Dat punt $(p, q)$ moet op de grafiek van $f$ liggen. Dus geldt ook:
(2)... $f(p) = (5 - 2p){e^p} = q$
En dat punt ligt ůůk op de raaklijn! Dus geldt (vul $x = p$ in en je vindt $y = q$):
(3)... $q = ap - 3a$

En dan heb je drie vergelijkingen waarmee je de waarde van $a$ moet proberen te vinden. En ik vind dat je dat nu zelf moet proberen!

En toch nog maar een tip. Ik denk dat het het handigst is als je probeert een vierkantsvergelijking in $p$ te vinden (bereken op twee manieren via (1), (2) en via (3) de waarde van ${q \over a}$).

Als het lukt, vind je $p = 3{\textstyle{1 \over 2}}$ en $p = 2$. Met die $p$'s weet je via (1) de waarden van $a$. En dan (pas) heb je de gezochte vergelijkingen.
Succes!

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 13 maart 2018
 Re: Re: Formule opstellen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2018 WisFaq - versie IIb