De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Verwachtingswaarde

Deze vraag kwam voor in onze cursus. Ik raak elke keer in de knoei bij het oplossen van de integraal voor momentenfuncties! Kunnen jullie mij helpen?

De toevallige veranderlijke N is standaardnormaal verdeeld. Waaraan is E(|N|) gelijk?

Emma
Student universiteit België - zaterdag 8 juli 2017

Antwoord

Loop achter de definities aan: als $x$ negatief is geldt $P(|N|\le x)=0$ als $x$ niet negatief is geldt
$$
P(|N|\le x)=P(-x\le|N|\le x)= P(N\le x)-P(N\le-x)= 2P(N\le x)-1
$$
Immers $P(N\le -x)=P(N\ge x)=1-P(N\le x)$.
Er geldt dus
$$
P(|N|\le x)=\frac2{\sqrt{2\pi}}\int_0^x\mathrm{e}^{-\frac12t^2}\mathrm{d}t
$$
als $x\ge0$ (anders is de kans gelijk aan $0$).
Dit betekent dat je
$$
\frac2{\sqrt{2\pi}}\int_0^\infty t\mathrm{e}^{-\frac12t^2}\mathrm{d}t
$$
moet uitrekenen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 9 juli 2017



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3