De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiaalvergelijkingen

Beste,

Ik heb een vraagje over differentiaalvergelijkingen.
Ik had graag geweten of ik het volgende goed heb begrepen.

Een DV heeft 3 soorten oplossingen
De algemene oplossing
De particuliere oplossing
De singuliere oplossing

Stel dat de oplossing x+c is
Dan is de algemene oplossingen
Alle mogelijke rechte met verticale verschuiving c en dus eigenlijk alles dat je in het richtingsveld kan tekenen
De particuliere oplossing zou dan een oplossing zijn, waarbij c een waarde aanneemt en je dus juist 1 rechte bekomt die deel uitmaakt van het richtingsveld

De singuliere oplossing is een oplossing van de DV die niet voorkomt bij de algemene oplossing bv x^2+c

De oplossingen zijn maar voorbeelden ik heb geen idee of er een DV bestaat met juist die algemene en singuliere oplossingen...

Zou iemand me kunnen bevestigen dat ik dit correct heb begrepen? Of willen uitleggen wat het verschil is tussen deze 3 oplossingen?
En wat verstaat men juist onder de exacte en homogene oplossing?
Ik vermoed dat deze laatste 2 andere namen zijn voor de particuliere en of de algemene oplossing...

Alvast bedankt
Thim

Tim
Iets anders - vrijdag 12 februari 2016

Antwoord

Je samenvatting van de verschillende soorten oplossingen heb je wel correct geformuleerd.
Wat de termen 'exact' en 'homogeen' betreft, denk ik dat iets anders wordt bedoeld.
Zoals je bij het oplossen van gewone vergelijkingen allerlei bepaalde typen bestudeert (vierkantsvergelijking, gebroken vergelijking, wortelvergelijking, goniovergelijking enz. enz.), zo kom je bij de de DV-en ook allerlei typen tegen. Twee daarvan zijn de exacte en de homogene differentiaalvergelijking. Daarvoor kent men bepaalde strategiëen om ze op te lossen.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 12 februari 2016



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3