De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Afgeleiden

 Dit is een reactie op vraag 71012 
Je dit had ik zelf ook al gevonden, en dan probeer ik dit uit te werken en blijkbaar maak ik steeds een rekenfout want ik bekom nooit de juiste oplossing...

Nicola
3de graad ASO - zondag 29 september 2013

Antwoord

Volgens mij moet je de spelregels ook maar 's lezen! Zo ver was je al..? Lekker is dat.

$
\begin{array}{l}
f(x) = \ln \left( {x + \sqrt {x^2 + 1} } \right) \\
f'(x) = \frac{1}{{x + \sqrt {x^2 + 1} }}\left( {1 + \frac{1}{{2\sqrt {x^2 + 1} }} \cdot 2x} \right) \\
f'(x) = \frac{1}{{x + \sqrt {x^2 + 1} }}\left( {1 + \frac{x}{{\sqrt {x^2 + 1} }}} \right) \\
f'(x) = \frac{1}{{x + \sqrt {x^2 + 1} }}\left( {\frac{{\sqrt {x^2 + 1} }}{{\sqrt {x^2 + 1} }} + \frac{x}{{\sqrt {x^2 + 1} }}} \right) \\
f'(x) = \frac{1}{{x + \sqrt {x^2 + 1} }}\left( {\frac{{x + \sqrt {x^2 + 1} }}{{\sqrt {x^2 + 1} }}} \right) \\
f'(x) = \frac{1}{{\sqrt {x^2 + 1} }} \\
\end{array}
$

Moet kunnen toch?

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 29 september 2013



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3